The superfluid-insulator transition in the disordered two-dimensional Bose-Hubbard model

نویسندگان

  • Fei Lin
  • Erik S. Sørensen
  • D. M. Ceperley
چکیده

We investigate the superfluid-insulator transition in the disordered two-dimensional Bose-Hubbard model through quantum Monte Carlo simulations. The Bose-Hubbard model is studied in the presence of site disorder and the quantum critical point between the Bose-glass and superfluid is determined in both the grand canonical (μ/U = 0.375 close to ρ = 1) and canonical ensemble (ρ = 1 and 0.5). Particular attention is paid to disorder averaging and it is shown that an extremely large number of disorder realizations are needed in order to obtain reliable results. Typically we average over more than 100, 000 disorder realizations. In the grand canonical ensemble we find Ztc/U = 0.112(1) with μ/U = 0.375, significantly different from previous studies. When compared to the critical point in the absence of disorder (Ztc/U = 0.2385), this result confirms previous findings showing that disorder enlarges the superfluid region. At the critical point, in order to estimate universal features, we compute the dynamic conductivity scaling curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superfluid-insulator transition in the disordered two-dimensional Bose-Hubbard model

We investigate the superfluid-insulator transition in the disordered two-dimensional Bose-Hubbard model through quantum Monte Carlo simulations. The Bose-Hubbard model is studied in the presence of site disorder, and the quantum critical point between the Bose glass and superfluid is determined in the grand canonical ensemble at μ/U = 0 (close to ρ = 0.5), μ/U = 0.375 (close to ρ = 1), and μ/U ...

متن کامل

Dual theory of the superfluid-Bose glass transition in disordered Bose-Hubbard model in one and two dimensions

I study the zero-temperature phase transition between superfluid and insulating ground states of the Bose-Hubbard model in a random chemical potential and at large integer average number of particles per site. Duality transformation maps the pure Bose-Hubbard model onto the sine-Gordon theory in one dimension (1D), and onto the three dimensional Higgs electrodynamics in two dimensions (2D). In ...

متن کامل

Phase diagram of the commensurate two-dimensional disordered Bose-Hubbard model.

We establish the full ground state phase diagram of the disordered Bose-Hubbard model in two dimensions at a unity filling factor via quantum Monte Carlo simulations. Similarly to the three-dimensional case we observe extended superfluid regions persisting up to extremely large values of disorder and interaction strength which, however, have small superfluid fractions and thus low transition te...

متن کامل

Phase diagram of a disordered boson Hubbard model in two dimensions.

We study the zero-temperature phase transition of a two-dimensional disordered boson Hubbard model. The phase diagram is constructed in terms of the disorder strength and the chemical potential. Via Monte Carlo simulations, we find a multicritical line separating the weak-disorder regime, where the Mott-insulator-to-superfluid transition occurs, from the strong-disorder regime, where the Bose-g...

متن کامل

Superfluid-insulator transition of two-dimensional disordered Bose gases

We study the two-dimensional weakly repulsive Bose gas at zero temperature in the presence of correlated disorder. Using large-scale simulations, we show that the low-energy Bogoliubov cumulative density of states remains quadratic up to a critical disorder strength, beyond which a power law with disorder-dependent exponent β < 2 sets in. We associate this threshold behavior with the transition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011